Sustainable eco-friendly sub-micron NaCl crystal powder-assisted method to synthesize SiOx/C as anode materials originated from rice husk for lithium-ion batteries
In the present study, we produced SiOx/C from rice husk by the NaCl sub-micron crystal-assisted synthesis method which can mitigate environmental degradation and hazards, simplify preparation, and improve electrochemical performance. During synthesis, NaCl induces catalytic graphitization, carbon ac...
Gespeichert in:
Veröffentlicht in: | EcoMat (Beijing, China) China), 2023-11, Vol.5 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, we produced SiOx/C from rice husk by the NaCl sub-micron crystal-assisted synthesis method which can mitigate environmental degradation and hazards, simplify preparation, and improve electrochemical performance. During synthesis, NaCl induces catalytic graphitization, carbon activation, and amorphous silica formation. Moreover, it is only partially consumed and can be recrystallized and reused indefinitely. Our NaCl sub-micron crystal powder-assisted method created lithium-ion batteries (LIBs) with rice husk-derived SiOx/C anodes that exhibited a high initial charge/discharge capacity of 422.05/915.93 mAh∙g−1 at 0.05 A∙g−1 current density and stable cycling performance. In addition, the SiOx/C electrode produced by the NaCl micro-crystal method had 333.96 mAh∙g−1 capacity at 0.05 A∙g−1 current density. By contrast, bare rice husk electrode exhibited a lower capacity of 333.96 mAh∙g−1at the same condition. |
---|---|
ISSN: | 2567-3173 |
DOI: | 10.1002/eom2.12401 |