Effect of different processing steps in the production of beer fish on volatile flavor profile and their precursors determined by HS-GC-IMS, HPLC, E-nose, and E-tongue

Beer fish is characterized by its distinctive spicy flavor and strong beer aroma. Currently, there is a lack of comprehensive research analyzing the changes in taste and volatile compounds that occur during the processing of beer fish. Thus, this study used HS-GC-IMS, electronic tongue, and electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food Chemistry: X 2024-10, Vol.23, p.101623, Article 101623
Hauptverfasser: Liu, Yingying, Al-Dalali, Sam, Hu, Yan, Zhao, Dong, Wang, Jinghan, He, Zhigui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Beer fish is characterized by its distinctive spicy flavor and strong beer aroma. Currently, there is a lack of comprehensive research analyzing the changes in taste and volatile compounds that occur during the processing of beer fish. Thus, this study used HS-GC-IMS, electronic tongue, and electronic nose to investigate the changes in flavor components during various processing stages of beer fish. The obtained results were subsequently analyzed using multivariate statistical analysis. The results showed that the final beer fish product (SF) had the greatest amount of free amino acids (888.28 mg/100 g), with alanine, glutamic acid, and glycine contributing to the taste of SF. The inosine monophosphate (IMP) content of beer fish meat varied noticeably depending on processing stages, with deep-fried fish (FF) having the greatest IMP content (61.93 mg/100 g), followed by the final product (SF) and ultrasonic-cured fish (UF). A total of 67 volatiles were detected by GC-IMS, mainly consisting of aldehydes, ketones, and alcohols, of which aldehydes accounted for >37%, which had a great influence on the volatile flavor of beer fish. The flavor components' composition varied noticeably depending on the stage of processing. PLS-DA model screened 35 volatile flavor components (VIP > 1) as markers; the most significant differences were 1-propanethiol, isoamyl alcohol, ethanol, and eucalyptol. Ultrasonic processing, frying, and soaking sauce can significantly improve the formation of flavor compounds, resulting in a notable enhancement of the final beer fish's umami taste and overall flavor quality. •GC-IMS identified 67 flavor compounds in total.•The PLS-DA model screened 35 volatile flavor components (VIP > 1) as markers.•Ultrasonic processing and frying are the primary procedures used to improve the taste of beer fish.•Glutamic acid, glycine, and alanine contribute to the taste of beer fish products.
ISSN:2590-1575
2590-1575
DOI:10.1016/j.fochx.2024.101623