Soil δ13C and δ15N baselines clarify biogeographic heterogeneity in isotopic discrimination of European badgers (Meles meles)
Isotopic techniques have been used to study phenomena in the geological, environmental, and ecological sciences. For example, isotopic values of multiple elements elucidate the pathways energy and nutrients take in the environment. Isoscapes interpolate isotopic values across a geographical surface...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-01, Vol.12 (1), p.200-200, Article 200 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Isotopic techniques have been used to study phenomena in the geological, environmental, and ecological sciences. For example, isotopic values of multiple elements elucidate the pathways energy and nutrients take in the environment. Isoscapes interpolate isotopic values across a geographical surface and are used to study environmental processes in space and time. Thus, isoscapes can reveal ecological shifts at local scales, and show distribution thresholds in the wider environment at the macro-scale. This study demonstrates a further application of isoscapes, using soil isoscapes of
13
C/
12
C and
15
N/
14
N as an environmental baseline, to understand variation in trophic ecology across a population of Eurasian badgers (
Meles meles
) at a regional scale. The use of soil isoscapes reduced error, and elevated the statistical signal, where aggregated badger hairs were used, and where individuals were identified using genetic microarray analysis. Stable isotope values were affected by land-use type, elevation, and meteorology. Badgers in lowland habitats had diets richer in protein and were adversely affected by poor weather conditions in all land classes. It is concluded that soil isoscapes are an effective way of reducing confounding biases in macroscale, isotopic studies. The method elucidated variation in the trophic and spatial ecology of economically important taxa at a landscape level. These results have implications for the management of badgers and other carnivores with omnivorous tendencies in heterogeneous landscapes. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-04011-2 |