Global Behavior of the Difference Equation xn+1=(p+xn-1)/(qxn+xn-1)
We study the following difference equation xn+1=(p+xn-1)/(qxn+xn-1), n=0,1,…, where p,q∈(0,+∞) and the initial conditions x-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed...
Gespeichert in:
Veröffentlicht in: | Abstract and applied analysis 2010, Vol.2010 (2010), p.1-6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following difference equation xn+1=(p+xn-1)/(qxn+xn-1), n=0,1,…, where p,q∈(0,+∞) and the initial conditions x-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2010/237129 |