On local antimagic vertex coloring of corona products related to friendship and fan graph

Let G=(V,E) be connected graph. A bijection f : E → {1,2,3,..., |E|} is a local antimagic of G if any adjacent vertices u,v ∈ V satisfies w(u)≠ w(v), where w(u)=∑e∈E(u) f(e), E(u) is the set of edges incident to u. When vertex u is assigned the color w(u), we called it a local antimagic vertex color...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indonesian journal of combinatorics 2021-12, Vol.5 (2), p.110-121
Hauptverfasser: Himami, Zein Rasyid, Silaban, Denny Riama
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G=(V,E) be connected graph. A bijection f : E → {1,2,3,..., |E|} is a local antimagic of G if any adjacent vertices u,v ∈ V satisfies w(u)≠ w(v), where w(u)=∑e∈E(u) f(e), E(u) is the set of edges incident to u. When vertex u is assigned the color w(u), we called it a local antimagic vertex coloring of G. A local antimagic chromatic number of G, denoted by χla(G), is the minimum number of colors taken over all colorings induced by the local antimagic labeling of G. In this paper, we determine the local antimagic chromatic number of corona product of friendship and fan with null graph on m vertices, namely, χla(Fn ⊙ \overline{K_m}) and χla(f(1,n) ⊙ \overline{K_m}).
ISSN:2541-2205
2541-2205
DOI:10.19184/ijc.2021.5.2.7