The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes
The development of efficient green light-emitting diodes (LEDs) is of paramount importance for the realization of colour-mixing white LEDs with a high luminous efficiency. While the insertion of an InGaN/GaN superlattice (SL) with a lower In content before the growth of InGaN/GaN multiple quantum we...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-07, Vol.8 (1), p.11053-12, Article 11053 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of efficient green light-emitting diodes (LEDs) is of paramount importance for the realization of colour-mixing white LEDs with a high luminous efficiency. While the insertion of an InGaN/GaN superlattice (SL) with a lower In content before the growth of InGaN/GaN multiple quantum wells (MQWs) is known to increase the efficiency of LEDs, the actual mechanism is still debated. We therefore conduct a systematic study and investigate the different mechanisms for this system. Through cathodoluminescence and Raman measurements, we clearly demonstrate that the potential barrier formed by the V-pit during the low-temperature growth of an InGaN/GaN SL dramatically increases the internal quantum efficiency (IQE) of InGaN quantum wells (QWs) by suppressing non-radiative recombination at threading dislocations (TDs). We find that the V-pit potential barrier height depends on the V-pit diameter, which plays an important role in determining the quantum efficiency, forward voltage and efficiency droop of green LEDs. Furthermore, our study reveals that the low-temperature GaN can act as an alternative to an InGaN/GaN SL structure for promoting the formation of V-pits. Our findings suggest the potential of implementing optimized V-pits embedded in an InGaN/GaN SL or low-temperature GaN structure as a beneficial underlying layer for the realization of highly efficient green LEDs. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-29440-4 |