Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance

Low levels of reactive oxygen species (ROS) are crucial for maintaining cancer stem cells (CSCs) and their ability to resist therapy, but the ROS regulatory mechanisms in CSCs remains to be explored. Here, we discover that prohibitin (PHB) specifically regulates mitochondrial ROS production in gliom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.3720-3720, Article 3720
Hauptverfasser: Huang, Haohao, Zhang, Songyang, Li, Yuanyuan, Liu, Zhaodan, Mi, Lanjuan, Cai, Yan, Wang, Xinzheng, Chen, Lishu, Ran, Haowen, Xiao, Dake, Li, Fangye, Wu, Jiaqi, Li, Tingting, Han, Qiuying, Chen, Liang, Pan, Xin, Li, Huiyan, Li, Tao, He, Kun, Li, Ailing, Zhang, Xuemin, Zhou, Tao, Xia, Qing, Man, Jianghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low levels of reactive oxygen species (ROS) are crucial for maintaining cancer stem cells (CSCs) and their ability to resist therapy, but the ROS regulatory mechanisms in CSCs remains to be explored. Here, we discover that prohibitin (PHB) specifically regulates mitochondrial ROS production in glioma stem-like cells (GSCs) and facilitates GSC radiotherapeutic resistance. We find that PHB is upregulated in GSCs and is associated with malignant gliomas progression and poor prognosis. PHB binds to peroxiredoxin3 (PRDX3), a mitochondrion-specific peroxidase, and stabilizes PRDX3 protein through the ubiquitin-proteasome pathway. Knockout of PHB dramatically elevates ROS levels, thereby inhibiting GSC self-renewal. Importantly, deletion or pharmacological inhibition of PHB potently slows tumor growth and sensitizes tumors to radiotherapy, thus providing significant survival benefits in GSC-derived orthotopic tumors and glioblastoma patient-derived xenografts. These results reveal a selective role of PHB in mitochondrial ROS regulation in GSCs and suggest that targeting PHB improves radiotherapeutic efficacy in glioblastoma. How ROS levels are regulated in cancer stem cells and their contribution to cancer resistance is currently not clear. Here, the authors show that prohibitin regulates mitochondrial ROS production stabilizing the peroxidase PRDX3 and this accounts for radiotherapy resistance in glioma stem-like cells.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24108-6