A naturally occurring defective DNA satellite associated with a monopartite begomovirus: evidence for recombination between alphasatellite and betasatellite

Monopartite begomoviruses and their associated satellites form unique disease complexes that have emerged as a serious threat to agriculture worldwide. It is well known that frequent recombination contributes to the diversification and evolution of geminiviruses. In this study, we identified a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Viruses 2013-09, Vol.5 (9), p.2116-2128
Hauptverfasser: Huang, Changjun, Xie, Yan, Zhao, Liling, Ren, He, Li, Zhenghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monopartite begomoviruses and their associated satellites form unique disease complexes that have emerged as a serious threat to agriculture worldwide. It is well known that frequent recombination contributes to the diversification and evolution of geminiviruses. In this study, we identified a novel defective satellite molecule (RecSat) in association with Tobacco leaf curl Yunnan virus (TbLCYNV) in a naturally infected tobacco plant. Sequence analysis showed that Recsat comprises 754 nucleotides in size and is a chimera involving alphasatellite and betasatellite sequences, containing both betasatellite-conserved region and alphasatellite stem-loop structure. Recombination analysis revealed that RecSat has arisen from three independent recombination events likely involving Tomato yellow leaf curl China betasatellite, Ageratum yellow vein China betasatellite and Tobacco curly shoot alphasatellite. Co-inoculation of RecSat with TbLCYNV induced symptoms indistinguishable from those induced by TbLCYNV alone in Nicotiana benthamiana. Southern blot hybridization showed that RecSat could be trans-replicated stably in N. benthamiana plants by TbLCYNV, and impaired the accumulation of helper virus and co-inoculated alphasatellite. Our results provide the first evidence for recombination between two distinct types of satellites among geminivirus complex and highlight recombination as a driving force for geminivirus evolution.
ISSN:1999-4915
1999-4915
DOI:10.3390/v5092116