Circular RNA circMTO1 Suppresses RCC Cancer Cell Progression via miR9/LMX1A Axis

Renal cell carcinoma is one of the most common kidney cancer, which accounts almost 90% of the adult renal malignancies worldwide. In recent years, a new class of endogenous noncoding RNAs, circular RNAs, exert important roles in cell function and certain types of pathological responses, especially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technology in cancer research & treatment 2020-01, Vol.19, p.1533033820914286-1533033820914286
Hauptverfasser: Li, Kecheng, Wan, Cheng-Liang, Guo, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renal cell carcinoma is one of the most common kidney cancer, which accounts almost 90% of the adult renal malignancies worldwide. In recent years, a new class of endogenous noncoding RNAs, circular RNAs, exert important roles in cell function and certain types of pathological responses, especially in cancers, generally by acting as a microRNA sponge. Circular RNAs could act as sponge to regulate the microRNA and the target genes. However, the knowledge about circular RNAs in renal cell carcinoma remains unclear so far. In the research, we selected a highly expressed novel circular RNAs named circMTO1 in renal cell carcinomas. We investigated the roles of circMTO1 and found that circMTO1 overexpression could suppress cell proliferation and metastases in both A497 and 786-O renal cancer cells, while silencing of circMTO1 could promote the progression in SN12C and OS-RC-2 renal cancer cells. The study showed that circMTO1 acted as miR9 and miR223 sponge and inhibited their levels. Furthermore, silencing of circMTO1 in renal cell carcinoma could downregulate LMX1A, the target of miR-9, resulting in the promotion of renal cell carcinoma cell proliferation and invasion. In addition, LMX1A expression suppression induced by transfection of miR9 mimics confirmed that miR9 exerted its function in renal cell carcinoma by regulating LMX1A expression. What’s more, miR9 inhibitor and LMX1A overexpression could block the tumor-promoting effect of circMTO1 silencing. In conclusion, circMTO1 suppresses renal cell carcinoma progression by circMTO1/miR9/ LMX1A, indicating that circMTO1 may be a potential target in renal cell carcinoma therapy.
ISSN:1533-0346
1533-0338
DOI:10.1177/1533033820914286