Highly Uniform Array of Hexagonally Symmetric Micro‐Pyramid Structures for Scalable and Single Quantum Dot Emitters
Controlling the site, size, and shape of group III‐nitride quantum dots (QDs) is critical for the development of mass‐producible single‐photon sources for scalable quantum technologies operable at room temperature. Herein, a methodology is proposed for fabricating high‐purity single QD emitters by c...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2023-03, Vol.10 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlling the site, size, and shape of group III‐nitride quantum dots (QDs) is critical for the development of mass‐producible single‐photon sources for scalable quantum technologies operable at room temperature. Herein, a methodology is proposed for fabricating high‐purity single QD emitters by controlling site‐controlled GaN micro‐pyramid structures with a high degree of uniformity and symmetry. To achieve a uniformly grown, hexagonally symmetric micro‐pyramid array, the H2/N2 carrier gas ratio, growth temperature, and V/III ratio are controlled to attain self‐limited growth regime and self‐limited width at the GaN pyramid apex. A thin InGaN layer is consecutively grown on a pyramid array under the growth condition for enhancing the growth rate anisotropy to hinder the growth of InGaN quantum wells (QWs) at semi‐polar facets. As a result, single‐photon emission is observed from apex QD with suppressed background side QW emission while maintaining more than 90% high hexagonal QD symmetry over the large area of the wafer.
Micro pyramid structures have small and finite size of self‐limited width by growing self‐limited growth mechanisms. After growing a single active layer by adjusting growth conditions, a uniform array of self‐limited pyramid with a symmetric quantum dot on its pyramid apex can be achieved. |
---|---|
ISSN: | 2196-7350 2196-7350 |
DOI: | 10.1002/admi.202202085 |