New Types of Nonlinear Waves and Bifurcation Phenomena in Schamel-Korteweg-de Vries Equation

We study the nonlinear waves described by Schamel-Korteweg-de Vries equation ut+au1/2+buux+δuxxx=0. Two new types of nonlinear waves called compacton-like waves and kink-like waves are displayed. Furthermore, two kinds of new bifurcation phenomena are revealed. The first phenomenon is that the kink...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.573-590-571
Hauptverfasser: Wu, Yun, Zhengrong, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the nonlinear waves described by Schamel-Korteweg-de Vries equation ut+au1/2+buux+δuxxx=0. Two new types of nonlinear waves called compacton-like waves and kink-like waves are displayed. Furthermore, two kinds of new bifurcation phenomena are revealed. The first phenomenon is that the kink waves can be bifurcated from five types of nonlinear waves which are the bell-shape solitary waves, the blow-up waves, the valley-shape solitary waves, the kink-like waves, and the compacton-like waves. The second phenomenon is that the periodic-blow-up wave can be bifurcated from the smooth periodic wave.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/483492