Novel green route towards polyesters-based resin by photopolymerization of star polymers

Bio-based star-shaped poly(ε-caprolactone)s (S-PCL) derived from sugar-based D-sorbitol as an initiator were obtained via solvent-free enzymatic ring-opening polymerization (eROP). The star S-PCL were converted into UV-curable maleates by employing maleic anhydride for subsequent crosslinking with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Express polymer letters 2019-12, Vol.13 (12), p.1104-1115
Hauptverfasser: Baheti, P., Bonneaud, C., Bouilhac, C., Joly-Duhamel, C., Howdle, S. M., Lacroix-Desmazes, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bio-based star-shaped poly(ε-caprolactone)s (S-PCL) derived from sugar-based D-sorbitol as an initiator were obtained via solvent-free enzymatic ring-opening polymerization (eROP). The star S-PCL were converted into UV-curable maleates by employing maleic anhydride for subsequent crosslinking with tri(ethylene glycol) divinyl ether (DVE-3) in the presence of Darocur 1173 as a radical photoinitiator. The kinetics of the UV-induced radical copolymerization was monitored by real-time Fourier-Transform InfraRed (FTIR) spectroscopy, which revealed that the star S-PCL maleate/divinyl ether system was not scavenged by molecular oxygen (donor/acceptor polymerization). The UV-crosslinking reaction was fast (~10 s) to reach near quantitative conversions. The S-PCL maleate / divinyl ether liquid formulation cast on glass substrates successfully gave films upon UV-crosslinking. The thermal properties of the polymer films and their precursor polymers were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Finally, the crosslinked polymer film demonstrated promising adhesive properties on steel, aluminum and glass substrates.
ISSN:1788-618X
1788-618X
DOI:10.3144/expresspolymlett.2019.95