Mass Spectrometry-Based Quantification of the Antigens in Aluminum Hydroxide-Adjuvanted Diphtheria-Tetanus-Acellular-Pertussis Combination Vaccines

Vaccines undergo stringent batch-release testing, most often including in-vivo assays for potency. For combination vaccines, such as diphtheria-tetanus-pertussis (DTaP), chemical modification induced by formaldehyde inactivation, as well as adsorption to aluminum-based adjuvants, complicates antigen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccines (Basel) 2022-07, Vol.10 (7), p.1078
Hauptverfasser: van der Maas, Larissa, Danial, Maarten, Kersten, Gideon F. A., Metz, Bernard, Meiring, Hugo D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vaccines undergo stringent batch-release testing, most often including in-vivo assays for potency. For combination vaccines, such as diphtheria-tetanus-pertussis (DTaP), chemical modification induced by formaldehyde inactivation, as well as adsorption to aluminum-based adjuvants, complicates antigen-specific in-vitro analysis. Here, a mass spectrometric method was developed that allows the identification and quantitation of DTaP antigens in a combination vaccine. Isotopically labeled, antigen-specific internal standard peptides were employed that permitted absolute quantitation of their antigen-derived peptide counterparts and, consequently, the individual antigens. We evaluated the applicability of the method on monovalent non-adjuvanted antigens, on final vaccine lots and on experimental vaccine batches, where certain antigens were omitted from the drug product. Apart from the applicability for final batch release, we demonstrated the suitability of the approach for in-process control monitoring. The peptide quantification method facilitates antigen-specific identification and quantification of combination vaccines in a single assay. This may contribute, as part of the consistency approach, to a reduction in the number of animal tests required for vaccine-batch release.
ISSN:2076-393X
2076-393X
DOI:10.3390/vaccines10071078