A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes

In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-08, Vol.15 (1), p.7111-23, Article 7111
Hauptverfasser: Halama, Anna, Zaghlool, Shaza, Thareja, Gaurav, Kader, Sara, Al Muftah, Wadha, Mook-Kanamori, Marjonneke, Sarwath, Hina, Mohamoud, Yasmin Ali, Stephan, Nisha, Ameling, Sabine, Pucic Baković, Maja, Krumsiek, Jan, Prehn, Cornelia, Adamski, Jerzy, Schwenk, Jochen M., Friedrich, Nele, Völker, Uwe, Wuhrer, Manfred, Lauc, Gordan, Najafi-Shoushtari, S. Hani, Malek, Joel A., Graumann, Johannes, Mook-Kanamori, Dennis, Schmidt, Frank, Suhre, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays “The Molecular Human”. We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to “The Molecular Human” ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities. Multiomic phenotyping provides molecular insights into complex physiological processes and pathologies. The study uses 18 omics platforms to analyze biofluids from 391 participants. It constructs a comprehensive molecular network based on omics integration, revealing insights into diabetes and other traits.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-51134-x