Evolution equations on time-dependent Lebesgue spaces with variable exponents
We extend the results in Kloeden-Simsen [CPAA 2014] to \(p(x,t)\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\displaylines{ \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla ...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2023-07, Vol.2023 (1-??), p.50-13 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the results in Kloeden-Simsen [CPAA 2014] to \(p(x,t)\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\displaylines{ \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla _\lambda(t)\big)+|u_\lambda(t)|^{p(x,t)-2}u_\lambda(t) =B(t,u_\lambda(t)) }$$on a bounded smooth domain \(\Omega\) in \(\mathbb{R}^n\),\(n\geq 1\), with a homogeneous Neumann boundary condition, where the exponent \(p(\cdot)\in C(\bar{\Omega}\times [\tau,T],\mathbb{R}^+)\) satisfies \(\min p(x,t)>2\), and \(\lambda\in [0,\infty)\) is a parameter.
For more information see https://ejde.math.txstate.edu/Volumes/2023/50/abstr.html |
---|---|
ISSN: | 1072-6691 1072-6691 |
DOI: | 10.58997/ejde.2023.50 |