Evolution equations on time-dependent Lebesgue spaces with variable exponents

We extend the results in Kloeden-Simsen [CPAA 2014] to \(p(x,t)\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\displaylines{  \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2023-07, Vol.2023 (1-??), p.50-13
1. Verfasser: Simsen, Jacson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the results in Kloeden-Simsen [CPAA 2014] to \(p(x,t)\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\displaylines{  \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla  _\lambda(t)\big)+|u_\lambda(t)|^{p(x,t)-2}u_\lambda(t)  =B(t,u_\lambda(t)) }$$on a bounded smooth domain \(\Omega\) in \(\mathbb{R}^n\),\(n\geq 1\), with a homogeneous Neumann boundary condition, where the exponent \(p(\cdot)\in C(\bar{\Omega}\times [\tau,T],\mathbb{R}^+)\) satisfies \(\min p(x,t)>2\), and \(\lambda\in [0,\infty)\) is a parameter. For more information see https://ejde.math.txstate.edu/Volumes/2023/50/abstr.html
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.2023.50