Decrease in AQP4 expression level in atrophied skeletal muscles with innervation
Functional interaction between the selective water channel AQP4 and several ion channels, such as TRPV4, NKCC1, and Na+/K+‐ATPase, closely participate to regulate osmotic homeostasis. In the skeletal muscles, the decrease in APQ4 expression due to denervation was followed by the restoration of AQP4...
Gespeichert in:
Veröffentlicht in: | Physiological Reports 2021-05, Vol.9 (9), p.e14856-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Functional interaction between the selective water channel AQP4 and several ion channels, such as TRPV4, NKCC1, and Na+/K+‐ATPase, closely participate to regulate osmotic homeostasis. In the skeletal muscles, the decrease in APQ4 expression due to denervation was followed by the restoration of AQP4 expression during reinnervation. These findings raised the possibility that innervation status is an essential factor to regulate AQP4 expression in the skeletal muscles. This study investigated this hypothesis using disuse muscle atrophy model with innervation. Adult female Fischer 344 rats (8 weeks of age) were randomly assigned to either control (C) or cast immobilization (IM) groups (n = 6 per group). Two weeks after cast immobilization, the tibialis anterior muscles of each group were removed and the expression levels of some target proteins were quantified by western blot analysis. The expression level of AQP4 significantly decreased at 2 weeks post‐immobilization (p |
---|---|
ISSN: | 2051-817X |
DOI: | 10.14814/phy2.14856 |