SKA1/2/3 is a prognostic and predictive biomarker in esophageal adenocarcinoma and squamous cell carcinoma

Esophageal carcinoma (ESCA) ranks among the most prevalent malignant tumors globally. Despite significant advancements in treatment options and improved patient outcomes, the 5-year survival rate remains unsatisfactory. The spindle and kinetochore associated complex subunit 1/2/3 (SKA1/2/3) attached...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2024-11, Vol.24 (1), p.1480-19
Hauptverfasser: Zhang, Liming, Wang, Shaoqiang, Wang, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Esophageal carcinoma (ESCA) ranks among the most prevalent malignant tumors globally. Despite significant advancements in treatment options and improved patient outcomes, the 5-year survival rate remains unsatisfactory. The spindle and kinetochore associated complex subunit 1/2/3 (SKA1/2/3) attached to the kinetochore (KT) in the metaphase of mitosis are implicated in the occurrence and development of various tumors. However, the expression patterns, diagnostic significance and prognostic implications of SKA1/2/3 in ESCA have not been comprehensively determined. TCGA, UALCAN, Kaplan-Meier Plotter, and TIMER databases were leveraged to dissect the expression patterns, prognostic implications and diagnostic value of SKA1/2/3 in ESCA patients, as well as to investigate the potential regulatory mechanism of SKA1/2/3 in the onset and progression of ESCA. In ESCA, SKA1/2/3 exhibited substantial expression, with higher levels relating significantly with clinicopathological features and patient prognosis. Enrichment analysis of genes co-expressed with SKA1/2/3 highlighted their involvement in the cell cycle, DNA replication and p53 signaling pathway. Protein-protein interaction (PPI) analysis identified ten hub genes that were not only markedly upregulated but also portended a poor prognosis in ESCA. Additionally, immune infiltration assays uncovered a significant link between SKA1/2/3 expression and the immune cell infiltration within ESCA. Silencing of SKA1/2/3 significantly suppresses cell proliferation and migration, while concurrently promoting apoptosis in ESCA cells. SKA1/2/3 may serve as promising biomarkers for the prognosis and diagnosis of ESCA, which holds promise as a novel therapeutic target for the disease.
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-024-13257-8