Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big d...
Gespeichert in:
Veröffentlicht in: | Nashrīyah-i mudīrīyat-i fannāvarī-i iṭṭilāʻāt 2019-06, Vol.11 (2), p.1-42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; per |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to produce a structured model based on big data analytics for now-casting and eventuality of predictive policies is growing rapidly. The literature review demonstrates that a comprehensive model to assist policy-making institutions by providing all components and indicators in now-casting of predictive policies based on big data analytics is not devised yet. The presentation of the model is the main finding of this research. This research aims to provide a comprehensive model of now-casting and eventuality of predictive policies based on big data analytics for policy-making institutions. The research findings indicate that the dimensions of the comprehensive model include: the alignment of now-casting strategies and the big data analytics’ architecture, now-casting ecosystem, now-casting data resources, now-casting analytics, now-casting model and now-casting skill. The results of using the model were analyzed and the recommendations were presented. |
---|---|
ISSN: | 2008-5893 2423-5059 |
DOI: | 10.22059/jitm.2019.284645.2376 |