Lovastatin prevents bleomycin-induced DNA damage to HepG2 cells

Lovastatin as a member of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors is used as a lipid-lowering agent. It can also inhibit the formation of hydrogen peroxide and superoxide anion and finally leads to decline in oxidative stress processes. Here, we evaluated whether lovasta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in pharmaceutical sciences 2016-11, Vol.11 (6), p.470-475
Hauptverfasser: Nasiri, Marjan, Etebari, Mahmoud, Jafarian-Dehkordi, Abbas, Moradi, Shahla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lovastatin as a member of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors is used as a lipid-lowering agent. It can also inhibit the formation of hydrogen peroxide and superoxide anion and finally leads to decline in oxidative stress processes. Here, we evaluated whether lovastatin can increase DNA damage resistance of HepG2 cells against genotoxicity of the anticancer drug bleomycin (BLM). HepG2 cells were incubated with different concentrations of lovastatin (0.1, 0.5, 1, 5 µM) before exposure to BLM (0.5 µg/mL for one h). The genotoxic dose of BLM and lovastatin was separately determined and comet assay was used to evaluate the genotoxicity. After trapping cells in agarose coated lames, they were lysed and the electrophoresis was done in alkaline pH, then colored and monitored by florescent microscope. The results of this study indicated that lovastatin in doses lower than 5 µM has genoprotective effect and in doses higher than 50 µM is genotoxic. In conclusion, lovastatin is able to protect genotoxic effects of BLM in HepG2 cells. Further studies are needed to elucidate the mechanism(s) involved in this process.
ISSN:1735-5362
1735-9414
DOI:10.4103/1735-5362.194876