Extinction debts and colonization credits of non-forest plants in the European Alps

Mountain plant species shift their elevational ranges in response to climate change. However, to what degree these shifts lag behind current climate change, and to what extent delayed extinctions and colonizations contribute to these shifts, are under debate. Here, we calculate extinction debt and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-09, Vol.10 (1), p.4293-9, Article 4293
Hauptverfasser: Rumpf, Sabine B., Hülber, Karl, Wessely, Johannes, Willner, Wolfgang, Moser, Dietmar, Gattringer, Andreas, Klonner, Günther, Zimmermann, Niklaus E., Dullinger, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mountain plant species shift their elevational ranges in response to climate change. However, to what degree these shifts lag behind current climate change, and to what extent delayed extinctions and colonizations contribute to these shifts, are under debate. Here, we calculate extinction debt and colonization credit of 135 species from the European Alps by comparing species distribution models with 1576 re-surveyed plots. We find extinction debt in 60% and colonization credit in 38% of the species, and at least one of the two in 93%. This suggests that the realized niche of very few of the 135 species fully tracks climate change. As expected, extinction debts occur below and colonization credits occur above the optimum elevation of species. Colonization credits are more frequent in warmth-demanding species from lower elevations with lower dispersal capability, and extinction debts are more frequent in cold-adapted species from the highest elevations. Local extinctions hence appear to be already pending for those species which have the least opportunity to escape climate warming. Mismatches between the pace of climate change and plant responses may lead to delayed upslope shifts or extinction of mountain species. Here the authors investigate 135 alpine plant species, finding that extinction debts are more common among cold-adapted plants and colonization credits among warm-adapted plants.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12343-x