Pull-in Phenomenon in the Electrostatically Micro-switch Suspended between Two Conductive Plates using the Artificial Neural Network
Artificial Neural Networks (ANN) are designed to evaluate the pull-in voltage of MEMS switches. The mathematical model of a micro-switch subjected to electrostatic force is preliminarily illustrated to get the relevant equations providing static deflection and pull-in voltage. Adopting the Step-by-S...
Gespeichert in:
Veröffentlicht in: | Journal of applied and computational mechanics 2022-10, Vol.8 (4), p.1222-1235 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial Neural Networks (ANN) are designed to evaluate the pull-in voltage of MEMS switches. The mathematical model of a micro-switch subjected to electrostatic force is preliminarily illustrated to get the relevant equations providing static deflection and pull-in voltage. Adopting the Step-by-Step Linearization Method together with a Galerkin-based reduced order model, numerical results in terms of pull-in voltage are obtained to be employed in the training process of ANN. Then, feed forward back propagation ANNs are designed and a learning process based on the Levenberg-Marquardt method is performed. The ability of designed neural networks to determine pull-in voltage have been compared with previous results presented in experimental and theoretical studies and it has been shown that the presented method has a good ability to approximate the threshold voltage of micro switch. Furthermore, the geometric and physical effect of the micro-switch on the pull-in voltage was also examined using these designed networks and relevant findings were provided. |
---|---|
ISSN: | 2383-4536 |
DOI: | 10.22055/jacm.2021.38569.3248 |