Remark on subgroup intersection graph of finite abelian groups
Let be a finite group. The subgroup intersection graph of is a graph whose vertices are non-identity elements of and two distinct vertices and are adjacent if and only if , where is the cyclic subgroup of generated by . In this paper, we show that two finite abelian groups are isomorphic if and only...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2020-09, Vol.18 (1), p.1025-1029 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a finite group. The subgroup intersection graph
of
is a graph whose vertices are non-identity elements of
and two distinct vertices
and
are adjacent if and only if
, where
is the cyclic subgroup of
generated by
. In this paper, we show that two finite abelian groups are isomorphic if and only if their subgroup intersection graphs are isomorphic. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2020-0066 |