Identifying Fake News on Social Networks Based on Natural Language Processing: Trends and Challenges

The epidemic spread of fake news is a side effect of the expansion of social networks to circulate news, in contrast to traditional mass media such as newspapers, magazines, radio, and television. Human inefficiency to distinguish between true and false facts exposes fake news as a threat to logical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2021-01, Vol.12 (1), p.38
Hauptverfasser: de Oliveira, Nicollas R., Pisa, Pedro S., Lopez, Martin Andreoni, de Medeiros, Dianne Scherly V., Mattos, Diogo M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The epidemic spread of fake news is a side effect of the expansion of social networks to circulate news, in contrast to traditional mass media such as newspapers, magazines, radio, and television. Human inefficiency to distinguish between true and false facts exposes fake news as a threat to logical truth, democracy, journalism, and credibility in government institutions. In this paper, we survey methods for preprocessing data in natural language, vectorization, dimensionality reduction, machine learning, and quality assessment of information retrieval. We also contextualize the identification of fake news, and we discuss research initiatives and opportunities.
ISSN:2078-2489
2078-2489
DOI:10.3390/info12010038