Comparative Determination of Phenolic Compounds in Arabidopsis thaliana Leaf Powder under Distinct Stress Conditions Using Fourier-Transform Infrared (FT-IR) and Near-Infrared (FT-NIR) Spectroscopy

The increasing interest in plant phenolic compounds in the past few years has become necessary because of their several important physicochemical properties. Thus, their identification through non-destructive methods has become crucial. This study carried out comparative non-destructive measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2022-03, Vol.11 (7), p.836
Hauptverfasser: Joshi, Rahul, Sathasivam, Ramaraj, Jayapal, Praveen Kumar, Patel, Ajay Kumar, Nguyen, Bao Van, Faqeerzada, Mohammad Akbar, Park, Sang Un, Lee, Seung Hyun, Kim, Moon S, Baek, Insuck, Cho, Byoung-Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing interest in plant phenolic compounds in the past few years has become necessary because of their several important physicochemical properties. Thus, their identification through non-destructive methods has become crucial. This study carried out comparative non-destructive measurements of leaf powder sample phenolic compounds using Fourier-transform infrared and near-infrared spectroscopic techniques under six distinct stress conditions. The prediction analysis of 600 leaf powder samples under different stress conditions (LED lights and drought) was performed using PLSR, PCR, and NAS-based HLA/GO regression analysis methods. The results obtained through FT-NIR spectroscopy yielded the highest correlation coefficient (Rp2) value of 0.999, with a minimum error (RMSEP) value of 0.003 mg/g, based on the PLSR model using the MSC preprocessing method, which was slightly better than the correlation coefficient (Rp2) value of 0.980 with an error (RMSEP) value of 0.055 mg/g for FT-IR spectroscopy. Additionally, beta coefficient plots present spectral differences and the identification of important spectral signatures sensitive to the phenolic compounds in the measured powdered samples. Thus, the obtained results demonstrated that FT-NIR spectroscopy combined with partial least squares regression (PLSR) and suitable preprocessing method has a solid potential for non-destructively predicting phenolic compounds in leaf powder samples.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants11070836