On monoids of metric preserving functions

Let X be a class of metric spaces and let PX be the set of all f : [0, ∞) → [0, ∞) preserving X, i.e., (Y, f ∘ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the set of all metric preserving functions, we show that the equality PX = A has a solution if A is a monoid with respect to the operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in applied mathematics and statistics 2024-06, Vol.10
Hauptverfasser: Viktoriia Bilet, Oleksiy Dovgoshey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a class of metric spaces and let PX be the set of all f : [0, ∞) → [0, ∞) preserving X, i.e., (Y, f ∘ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the set of all metric preserving functions, we show that the equality PX = A has a solution if A is a monoid with respect to the operation of function composition. In particular, for the set SI of all amenable subadditive increasing functions, there is a class X of metric spaces such that PX = SI holds.2020 Mathematics Subject ClassificationPrimary 26A30, Secondary 54E35, 20M20
ISSN:2297-4687
DOI:10.3389/fams.2024.1420671