Dynamic Spectrum Co-Access in Multicarrier-Based Cognitive Radio Using Graph Theory Through Practical Channel
In this paper, we propose an underlay cognitive radio (CR) system that includes subscribers, termed secondary users (SUs), which are designed to coexist with the spectrum owners, termed primary users (PUs). The suggested network includes the PUs system and the SUs system. The coexistence between the...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-12, Vol.14 (23), p.10868 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose an underlay cognitive radio (CR) system that includes subscribers, termed secondary users (SUs), which are designed to coexist with the spectrum owners, termed primary users (PUs). The suggested network includes the PUs system and the SUs system. The coexistence between them is achieved by using a novel dynamic spectrum co-access multicarrier-based cognitive radio (DSCA-MC-CR) technique. The proposal uses a quadrature phase shift keying (QPSK) modulation technique within the orthogonal frequency-division multiplexing (OFDM) scheme that maximizes the system data rate and prevents data inter-symbol interference (ISI). The proposed CR transmitter station (TX) and the CR receiver node (RX) can use an advanced smart antenna system, i.e., a multiple-input and multiple-output (MIMO) system that provides high immunity against channel impairments and provides a high data rate through its different combining techniques. The proposed CR system is applicable to coexist within different existing communication applications like fifth-generation (5G) applications, emergence applications like the Internet of Things (IoT), narrow-band (NB) applications, and wide-band (WB) applications. The coexistence between the PUs system and the SUs system is based on using power donation from the SUs system to improve the quality of the PU signal-to-interference-and-noise ratios (SINRs). The green communication concept achieved in this proposal is compared with similar DSCA proposals from the literature. The simulations of the proposed technique show enhancement in the PUs system throughput and data rate along with the better performance of the SUs system. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app142310868 |