Brush cells fine-tune neurogenic inflammation in the airways
Airway epithelial cells, once considered a simple barrier layer, are now recognized as providing an active site for antigen sensing and immune response initiation. Most mucosal sites contain chemosensory epithelial cells, rare and specialized cells gaining recognition for their unique functions in s...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2022-07, Vol.132 (13), p.1-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Airway epithelial cells, once considered a simple barrier layer, are now recognized as providing an active site for antigen sensing and immune response initiation. Most mucosal sites contain chemosensory epithelial cells, rare and specialized cells gaining recognition for their unique functions in sensing and directing the immune response symphony. In this issue of the JCI, Hollenhorst, Nandigama, et al. demonstrated that tracheal chemosensory brush cells detected bitter-tasting substances, including quorum-sensing molecules (QSMs) generated by pathogenic Pseudomonas aeruginosa. The authors used various techniques, including genetic deletion of brush cells, genetic manipulation of brush cell signaling, deletion of sensory neurons, in vivo imaging, and infection models with P. aeruginosa, to show that QSMs increased vascular permeability and innate immune cell influx into the trachea. These findings link the recognition of bacterial QSMs to the innate immune response in the airways, with translational implications for airway inflammation and infectious pathology. |
---|---|
ISSN: | 1558-8238 0021-9738 1558-8238 |
DOI: | 10.1172/JCI161439 |