A Review of the Methods Calculating the Horizontal Displacement for Modular Reinforced Soil Retaining Walls

Most of the damage to reinforced retaining walls is caused by excessive deformation; however, there is no calculation method for deformation under static and dynamic loads in the design codes of reinforced soil retaining walls. In this paper, by collecting the measured displacement data from four ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-09, Vol.11 (18), p.8681
Hauptverfasser: Cai, Xiaoguang, Zhang, Shaoqiu, Li, Sihan, Xu, Honglu, Huang, Xin, Zhu, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most of the damage to reinforced retaining walls is caused by excessive deformation; however, there is no calculation method for deformation under static and dynamic loads in the design codes of reinforced soil retaining walls. In this paper, by collecting the measured displacement data from four actual projects, four indoor prototype tests and two indoor model tests under a total of 10 static load conditions, and comparing the calculation results with seven theoretical methods, the results show that the FHWA method is more applicable to the permanent displacement prediction of indoor prototype tests and that the CTI method is more applicable to the permanent displacement prediction of actual projects and indoor model tests. Two yield acceleration calculation methods and four permanent displacement calculation formulas were selected to calculate the displacement response of two reinforced soil test models under seismic loads and compared with the measured values, and the results showed that the Ausilio yield acceleration solution method was better. When the input peak acceleration ranges from 0.1 to 0.6 g, the Richards and Elms upper limit method is used, and when the input peak acceleration is 0.6–1.0 g, the Newmark upper limit method can predict the permanent displacement of the retaining wall more accurately.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11188681