High-performance silk-based hybrid membranes employed for osmotic energy conversion

The salinity gradient between seawater and river water is a clean energy source and an alternative solution for the increasing energy demands. A membrane-based reverse electrodialysis technique is a promising strategy to convert osmotic energy to electricity. To overcome the limits of traditional me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-08, Vol.10 (1), p.3876-10, Article 3876
Hauptverfasser: Xin, Weiwen, Zhang, Zhen, Huang, Xiaodong, Hu, Yuhao, Zhou, Teng, Zhu, Congcong, Kong, Xiang-Yu, Jiang, Lei, Wen, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The salinity gradient between seawater and river water is a clean energy source and an alternative solution for the increasing energy demands. A membrane-based reverse electrodialysis technique is a promising strategy to convert osmotic energy to electricity. To overcome the limits of traditional membranes with low efficiency and high resistance, nanofluidic is an emerging technique to promote osmotic energy harvesting. Here, we engineer a high-performance nanofluidic device with a hybrid membrane composed of a silk nanofibril membrane and an anodic aluminum oxide membrane. The silk nanofibril membrane, as a screening layer with condensed negative surface and nanochannels, dominates the ion transport; the anodic aluminum oxide membrane, as a supporting substrate, offers tunable channels and amphoteric groups. Thus, a nanofluidic membrane with asymmetric geometry and charge polarity is established, showing low resistance, high-performance energy conversion, and long-term stability. The system paves avenues for sustainable power generation, water purification, and desalination. Membrane-based reverse electrodialysis is promising for salinity gradient power generation, but achieving efficiency and stability is challenging. Here the authors design silk nanofibril-based hybrid membranes to realize high-performance capture of osmotic energy from ambient waters.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-11792-8