Bifunctional of Fe3O4@chitosan nanocomposite as a clarifying agent and cationic flocculant on different sugar solutions as a comprehensive semi industrial application

In the sugar industry, eliminating side impurities throughout the manufacturing process is the most significant obstacle to clarifying sugar solutions. Herein, magnetic chitosan (MCS) nanocomposite was Fabricated to be used as a biodegradable, environmentally friendly clarifying agent throughout the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-01, Vol.14 (1), p.1848-11, Article 1848
Hauptverfasser: Dardeer, Hemat M., Ibrahim, Ahmed S., Gad, Ahmed N., Gaber, Abdel-Aal M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the sugar industry, eliminating side impurities throughout the manufacturing process is the most significant obstacle to clarifying sugar solutions. Herein, magnetic chitosan (MCS) nanocomposite was Fabricated to be used as a biodegradable, environmentally friendly clarifying agent throughout the cane juice and sugar refining processes. Fe 3 O 4 was synthesized using the coprecipitation procedure, and then MCS was combined using a cross-linking agent. Furthermore, 14.76 emu g −1 was the maximum saturation magnetization (Ms) value. Because MCS is magnetically saturated, it may be possible to employ an external magnetic field to separate the contaminant deposited on its surface. Additionally, zeta potential analysis showed outstanding findings for MCS with a maximum value of (+) 20.7 mV, with improvement in color removal % up to 44.8% using MCS with more than 24% in color removal % compared to the traditional clarification process. Moreover, utilizing MCS reduced turbidity from 167 to 1 IU. Overall, we determined that MCS nanocomposite exhibits considerable effectiveness in the clarifying process for different sugar solutions, performing as an eco-friendly bio-sorbent and flocculating material.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-52111-6