Microcomb-Driven Optical Convolution for Car Plate Recognition

The great success of artificial intelligence (AI) calls for higher-performance computing accelerators, and optical neural networks (ONNs) with the advantages of high speed and low power consumption have become competitive candidates. However, most of the reported ONN architectures have demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics 2023-09, Vol.10 (9), p.972
Hauptverfasser: He, Zhenming, Cheng, Junwei, Liu, Xinyu, Wu, Bo, Zhou, Heng, Dong, Jianji, Zhang, Xinliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The great success of artificial intelligence (AI) calls for higher-performance computing accelerators, and optical neural networks (ONNs) with the advantages of high speed and low power consumption have become competitive candidates. However, most of the reported ONN architectures have demonstrated simple MNIST handwritten digit classification tasks due to relatively low precision. A microring resonator (MRR) weight bank can achieve a high-precision weight matrix and can increase computing density with the assistance of wavelength division multiplexing (WDM) technology offered by dissipative Kerr soliton (DKS) microcomb sources. Here, we implement a car plate recognition task based on an optical convolutional neural network (CNN). An integrated DKS microcomb was used to drive an MRR weight-bank-based photonic processor, and the computing precision of one optical convolution operation could reach 7 bits. The first convolutional layer was realized in the optical domain, and the remaining layers were performed in the electrical domain. Totally, the optoelectronic computing system (OCS) could achieve a comparable performance with a 64-bit digital computer for character classification. The error distribution obtained from the experiment was used to emulate the optical convolution operation of other layers. The probabilities of the softmax layer were slightly degraded, and the robustness of the CNN was reduced, but the recognition results were still acceptable. This work explores an MRR weight-bank-based OCS driven by a soliton microcomb to realize a real-life neural network task for the first time and provides a promising computational acceleration scheme for complex AI tasks.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics10090972