Carbon dioxide fluxes in Alpine grasslands at the Nivolet Plain, Gran Paradiso National Park, Italy 2017–2023

We introduce a georeferenced dataset of Net Ecosystem Exchange (NEE), Ecosystem Respiration (ER) and meteo-climatic variables (air and soil temperature, air relative humidity, soil volumetric water content, pressure, and solar irradiance) collected at the Nivolet Plain in Gran Paradiso National Park...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2024-06, Vol.11 (1), p.652-12, Article 652
Hauptverfasser: Parisi, Angelica, di Valdengo, Francesca Avogadro, Baneschi, Ilaria, Baronetti, Alice, Boiani, Maria Virginia, Catania, Maurizio, Lenzi, Sara, Magnani, Marta, Mosca, Pietro, Provenzale, Antonello, Raco, Brunella, Vivaldo, Gianna, Giamberini, Mariasilvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a georeferenced dataset of Net Ecosystem Exchange (NEE), Ecosystem Respiration (ER) and meteo-climatic variables (air and soil temperature, air relative humidity, soil volumetric water content, pressure, and solar irradiance) collected at the Nivolet Plain in Gran Paradiso National Park (GPNP), western Italian Alps, from 2017 to 2023. NEE and ER are derived by measuring the temporal variation of CO 2 concentration obtained by the enclosed chamber method. We used a customised portable non-steady-state dynamic flux chamber, paired with an InfraRed Gas Analyser (IRGA) and a portable weather station, measuring CO 2 fluxes at a number of points (around 20 per site and per day) within five different sites during the snow-free season (June to October). Sites are located within the same hydrological basin and have different geological substrates: carbonate rocks (site CARB), gneiss (GNE), glacial deposits (GLA, EC), alluvial sediments (AL). This dataset provides relevant and often missing information on high-altitude mountain ecosystems and enables new comparisons with other similar sites, modelling developments and validation of remote sensing data.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-024-03374-1