Energy Conditions for Hamiltonicity of Graphs

Let G be an undirected simple graph of order n. Let A(G) be the adjacency matrix of G, and let μ1(G)≤μ2(G)≤⋯≤μn(G) be its eigenvalues. The energy of G is defined as ℰ(G)=∑i=1n‍|μi(G)|. Denote by GBPT a bipartite graph. In this paper, we establish the sufficient conditions for G having a Hamiltonian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Dynamics in Nature and Society 2014-01, Vol.2014 (2014), p.577-582-071
Hauptverfasser: Cao, Jinde, Ye, Miaolin, Cai, Gaixiang, Yu, Guidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be an undirected simple graph of order n. Let A(G) be the adjacency matrix of G, and let μ1(G)≤μ2(G)≤⋯≤μn(G) be its eigenvalues. The energy of G is defined as ℰ(G)=∑i=1n‍|μi(G)|. Denote by GBPT a bipartite graph. In this paper, we establish the sufficient conditions for G having a Hamiltonian path or cycle or to be Hamilton-connected in terms of the energy of the complement of G, and give the sufficient condition for GBPT having a Hamiltonian cycle in terms of the energy of the quasi-complement of GBPT.
ISSN:1026-0226
1607-887X
DOI:10.1155/2014/305164