Energy Conditions for Hamiltonicity of Graphs
Let G be an undirected simple graph of order n. Let A(G) be the adjacency matrix of G, and let μ1(G)≤μ2(G)≤⋯≤μn(G) be its eigenvalues. The energy of G is defined as ℰ(G)=∑i=1n|μi(G)|. Denote by GBPT a bipartite graph. In this paper, we establish the sufficient conditions for G having a Hamiltonian...
Gespeichert in:
Veröffentlicht in: | Discrete Dynamics in Nature and Society 2014-01, Vol.2014 (2014), p.577-582-071 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be an undirected simple graph of order n. Let A(G) be the adjacency matrix of G, and let μ1(G)≤μ2(G)≤⋯≤μn(G) be its eigenvalues. The energy of G is defined as ℰ(G)=∑i=1n|μi(G)|. Denote by GBPT a bipartite graph. In this paper, we establish the sufficient conditions for G having a Hamiltonian path or cycle or to be Hamilton-connected in terms of the energy of the complement of G, and give the sufficient condition for GBPT having a Hamiltonian cycle in terms of the energy of the quasi-complement of GBPT. |
---|---|
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2014/305164 |