Adiponectin modulates steroid hormone secretion, granulosa cell proliferation and apoptosis via binding its receptors during hens’ high laying period
Adiponectin is an important adipocytokine and plays the roles in multiple metabolic processes via binding its receptors - AdipoR1 and AdipoR2, which has also been found to participate in the regulation of the reproductive system of animals, in particular by influencing the secretion of ovarian stero...
Gespeichert in:
Veröffentlicht in: | Poultry science 2021-07, Vol.100 (7), p.101197-101197, Article 101197 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adiponectin is an important adipocytokine and plays the roles in multiple metabolic processes via binding its receptors - AdipoR1 and AdipoR2, which has also been found to participate in the regulation of the reproductive system of animals, in particular by influencing the secretion of ovarian steroid hormones. To further investigate the expression of adiponectin and its receptors in follicles after in vitro incubation, and their role in the steroid synthesis of laying hens’ ovaries, we performed qRT-PCR and ELISA to detect the expressions of AdipoQ, AdipoR1, and AidpoR2, and determined the key genes involved in steroidogenesis and the secretion of estradiol (E2) and progesterone (P4) through the in vitro activation of adiponectin (AipoRon) and overexpression or knockdown of AdipoR1 and AdipoR2. Our results revealed that adiponectin and its receptors wildly exist in follicles and granulosa cells, and AdipoRon (5 and 10 µg/mL) had no effect on granulosa cell proliferation and apoptosis but significantly stimulated the secretion of adiponectin and its receptors in granulosa cells after incubation for 24 h. Furthermore, AdipoRon could significantly stimulate the secretion of P4 and inhibit E2 level compared to those of the control group through modulating the key genes expression of steroidogenesis (CYP19A1, StAR, CYP11A1, FSHR, and LHR). The secretion of E2 was also decreased in granulosa cells by the treatments of overexpression and knockdown of AdipoR1/2, however, there was no difference in terms of the level of P4 and StAR expression between them if there was overexpression or knockdown of AdipoR1/2. In addition, it was shown that the secretion of E2 only exhibits a marked drop if co-processing 10 µg/mL AdipoRon and pGMLV AdipoR2 compared to single treatments. Taken together, the study highlighted the role of adiponectin and its receptors in the regulation of steroid synthesis and secretion in ovarian granulosa cells in laying hens. |
---|---|
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.1016/j.psj.2021.101197 |