SMART: spatial transcriptomics deconvolution using marker-gene-assisted topic model

While spatial transcriptomics offer valuable insights into gene expression patterns within the spatial context of tissue, many technologies do not have a single-cell resolution. Here, we present SMART, a marker gene-assisted deconvolution method that simultaneously infers the cell type-specific gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2024-12, Vol.25 (1), p.304-304, Article 304
Hauptverfasser: Yang, Chen Xi, Sin, Don D, Ng, Raymond T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While spatial transcriptomics offer valuable insights into gene expression patterns within the spatial context of tissue, many technologies do not have a single-cell resolution. Here, we present SMART, a marker gene-assisted deconvolution method that simultaneously infers the cell type-specific gene expression profile and the cellular composition at each spot. Using multiple datasets, we show that SMART outperforms the existing methods in realistic settings. It also provides a two-stage approach to enhance its performance on cell subtypes. The covariate model of SMART enables the identification of cell type-specific differentially expressed genes across conditions, elucidating biological changes at a single-cell-type resolution.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03441-1