Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications

Fermi-Dirac and Bose-Einstein functions arise as quantum statistical distributions. The Riemann zeta function and its extension, the polylogarithm function, arise in the theory of numbers. Though it might not have been expected, these two sets of functions belong to a wider class of functions whose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2007, Vol.2007, p.1135-1143
Hauptverfasser: Chaudhry, M. Aslam, Qadir, Asghar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fermi-Dirac and Bose-Einstein functions arise as quantum statistical distributions. The Riemann zeta function and its extension, the polylogarithm function, arise in the theory of numbers. Though it might not have been expected, these two sets of functions belong to a wider class of functions whose members have operator representations. In particular, we show that the Fermi-Dirac and Bose-Einstein integral functions are expressible as operator representations in terms of themselves. Simpler derivations of previously known results of these functions are obtained by their operator representations.
ISSN:0161-1712
1687-0425
DOI:10.1155/2007/80515