The effect of tacrolimus-induced toxicity on metabolic profiling in target tissues of mice

Tacrolimus (Tac) is a common immunosuppressant that used in organ transplantation. However, its therapeutic index is narrow, and it is prone to adverse side effects, along with an increased risk of toxicity, namely, cardio-, nephro-, hepato-, and neurotoxicity. Prior metabolomic investigations invol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC pharmacology & toxicology 2022-11, Vol.23 (1), p.87-10, Article 87
Hauptverfasser: Xie, Dadi, Guo, Jinxiu, Dang, Ruili, Li, Yanan, Si, Qingying, Han, Wenxiu, Wang, Shan, Wei, Ning, Meng, Junjun, Wu, Linlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tacrolimus (Tac) is a common immunosuppressant that used in organ transplantation. However, its therapeutic index is narrow, and it is prone to adverse side effects, along with an increased risk of toxicity, namely, cardio-, nephro-, hepato-, and neurotoxicity. Prior metabolomic investigations involving Tac-driven toxicity primarily focused on changes in individual organs. However, extensive research on multiple matrices is uncommon. Hence, in this research, the authors systemically evaluated Tac-mediated toxicity in major organs, namely, serum, brain, heart, liver, lung, kidney, and intestines, using gas chromatography-mass spectrometry (GC-MS). The authors also employed multivariate analyses, including orthogonal projections to the latent structure (OPLS) and t-test, to screen 8 serum metabolites, namely, D-proline, glycerol, D-fructose, D-glucitol, sulfurous acid, 1-monopalmitin (MG (16:0/0:0/0:0)), glycerol monostearate (MG (0:0/18:0/0:0)), and cholesterol. Metabolic changes within the brain involved alterations in the levels of butanamide, tartronic acid, aminomalonic acid, scyllo-inositol, dihydromorphine, myo-inositol, and 11-octadecenoic acid. Within the heart, the acetone and D-fructose metabolites were altered. In the liver, D-glucitol, L-sorbose, palmitic acid, myo-inositol, and uridine were altered. In the lung, L-lactic acid, L-5-oxoproline, L-threonine, phosphoric acid, phosphorylethanolamine, D-allose, and cholesterol were altered. Lastly, in the kidney, L-valine and D-glucose were altered. Our findings will provide a systematic evaluation of the metabolic alterations in target organs within a Tac-driven toxicity mouse model.
ISSN:2050-6511
2050-6511
DOI:10.1186/s40360-022-00626-x