BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes

To fully utilize the power of single-cell RNA sequencing (scRNA-seq) technologies for identifying cell lineages and bona fide transcriptional signals, it is necessary to combine data from multiple experiments. We present BERMUDA (Batch Effect ReMoval Using Deep Autoencoders), a novel transfer-learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2019-08, Vol.20 (1), p.165-165, Article 165
Hauptverfasser: Wang, Tongxin, Johnson, Travis S, Shao, Wei, Lu, Zixiao, Helm, Bryan R, Zhang, Jie, Huang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To fully utilize the power of single-cell RNA sequencing (scRNA-seq) technologies for identifying cell lineages and bona fide transcriptional signals, it is necessary to combine data from multiple experiments. We present BERMUDA (Batch Effect ReMoval Using Deep Autoencoders), a novel transfer-learning-based method for batch effect correction in scRNA-seq data. BERMUDA effectively combines different batches of scRNA-seq data with vastly different cell population compositions and amplifies biological signals by transferring information among batches. We demonstrate that BERMUDA outperforms existing methods for removing batch effects and distinguishing cell types in multiple simulated and real scRNA-seq datasets.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-019-1764-6