Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses
Bedded pack manure has long been considered an unsuitable feedstock for conventional anaerobic digestion systems due to its high solids content. However, solid-state anaerobic digestion (SS-AD) provides an opportunity to generate methane from such high-solids feedstocks. This study was conducted to...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2018-02, Vol.11 (3), p.484 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bedded pack manure has long been considered an unsuitable feedstock for conventional anaerobic digestion systems due to its high solids content. However, solid-state anaerobic digestion (SS-AD) provides an opportunity to generate methane from such high-solids feedstocks. This study was conducted to determine the influence of moisture content on the digestion of bedded pack dairy manure using SS-AD. Mixtures of sawdust bedding and dairy manure were prepared with moisture contents (MCs) of 70, 76, and 83% and digested at 37 °C for 85 days. The performance of digesters containing manure at 83% MC was 1.3 to 1.4-fold higher than that of digesters containing 70% MC manure in terms of volatile solids (VS) reduction and biogas production. VS reduction rates were 55 to 75% and cumulative methane yield ranged from 64 to 90 NmL (gVS)−1. These values are lower than those from SS-AD of fresh manure and this is likely due to the partial decomposition of biodegradable materials during the two to three-month period before the manure was removed from the barn. However, in terms of efficient management of farm odors and providing a renewable energy source for heating, SS-AD of bedded pack manure offers a potential alternative to the conventional composting systems currently in use. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11030484 |