Development of SSR Markers Linked to Stress Responsive Genes along Tomato Chromosome 3 (Solanum lycopersicum L.)

This study aimed to develop novel SSR markers in tomato. Several BAC clones along chromosome 3 in tomato were selected based on their content. The criteria was the availability of genes, either directly or indirectly related to stress response (drought, salinity, and heat) in tomato. A total of 20 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotech (Basel) 2022-08, Vol.11 (3), p.34
Hauptverfasser: Brake, Mohammad, Al-Qadumii, Lana, Hamasha, Hassan, Migdadi, Hussein, Awad, Abi, Haddad, Nizar, Sadder, Monther T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to develop novel SSR markers in tomato. Several BAC clones along chromosome 3 in tomato were selected based on their content. The criteria was the availability of genes, either directly or indirectly related to stress response (drought, salinity, and heat) in tomato. A total of 20 novel in silico SSR markers were developed and 96 important nearby genes were identified. The identified nearby genes represent different tomato genes involved in plant growth and development and biotic and abiotic stress tolerance. The developed SSR markers were assessed using tomato landraces. A total of 29 determinate and semi-determinate local tomato landraces collected from diverse environments were utilized. A total of 33 alleles with mean of 1.65 alleles per locus were scored, showing 100% polymorphic patterns, with a mean of 0.18 polymorphism information content (PIC) values. The mean of observed and expected heterozygosity were 0.19 and 0.24, respectively. The mean value of the Jaccard similarity index was used for clustering the landraces. The developed microsatellite markers showed potential to assess genetic variability among tomato landraces. The genetic distance information reported in this study can be used by breeders in future genetic improvement of tomato for tolerance against diverse stresses.
ISSN:2673-6284
2673-6284
DOI:10.3390/biotech11030034