Geometric Variation in the Surface Rupture of the 2018 Mw7.5 Palu Earthquake from Subpixel Optical Image Correlation

We obtained high-resolution (10 m) horizontal displacement fields from pre- and post-seismic Sentinel-2 optical images of the 2018 Mw7.5 Palu earthquake using subpixel image correlation. From these, we calculated the curl, divergence, and shear strain fields from the north-south (NS) and east-west (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-10, Vol.12 (20), p.3436
Hauptverfasser: Li, Chenglong, Zhang, Guohong, Shan, Xinjian, Zhao, Dezheng, Song, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtained high-resolution (10 m) horizontal displacement fields from pre- and post-seismic Sentinel-2 optical images of the 2018 Mw7.5 Palu earthquake using subpixel image correlation. From these, we calculated the curl, divergence, and shear strain fields from the north-south (NS) and east-west (EW) displacement fields. Our results show that the surface rupture produced by the event was distributed within the Sulawesi neck (0.0974–0.6632°S) and Palu basin (0.8835–1.4206°S), and had a variable strike of 313.0–355.2° and strike slip of 2.00–6.62 m. The NS and EW displacement fields within the Palu basin included fine-scale displacements in both the near- and far-fault, the deformation patterns included a small restraining bend (localized shortening), a distributed rupture zone, and a major releasing bend (net extension) from the curl, divergence, and shear strain. Surface rupture was dominated by left-lateral strike-slip from initiation to termination, with a localized normal slip component peaking at ~3.75 m. The characteristics and geometric variation of the ruptured fault controlled both the formation of these surface deformation patterns and sustained supershear rupture.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12203436