LOG-TANGENT INTEGRALS AND THE RIEMANN ZETA FUNCTION

We show that integrals involving the log-tangent function, with respect to any square-integrable function on (0,π/2), can be evaluated by the harmonic series. Consequently, several formulas and algebraic properties of the Riemann zeta function at odd positive integers are discussed. Furthermore, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2019-01, Vol.24 (3), p.404-421
Hauptverfasser: Elaissaoui, Lahoucine, Guennoun, Zine El-Abidine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that integrals involving the log-tangent function, with respect to any square-integrable function on (0,π/2), can be evaluated by the harmonic series. Consequently, several formulas and algebraic properties of the Riemann zeta function at odd positive integers are discussed. Furthermore, we show among other things, that the log-tangent integral with respect to the Hurwitz zeta function defines a meromorphic function and its values depend on the Dirichlet series ζh(s) :=∑n≥1hnn−s−8, where hn=∑nk=1(2k−1)−1.
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2019.025