Determinantal Expressions, Identities, Concavity, Maclaurin Power Series Expansions for van der Pol Numbers, Bernoulli Numbers, and Cotangent

In this paper, basing on the generating function for the van der Pol numbers, utilizing the Maclaurin power series expansion and two power series expressions of a function involving the cotangent function, and by virtue of the Wronski formula and a derivative formula for the ratio of two differentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2023-07, Vol.12 (7), p.665
Hauptverfasser: Sun, Zhen-Ying, Guo, Bai-Ni, Qi, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, basing on the generating function for the van der Pol numbers, utilizing the Maclaurin power series expansion and two power series expressions of a function involving the cotangent function, and by virtue of the Wronski formula and a derivative formula for the ratio of two differentiable functions, the authors derive four determinantal expressions for the van der Pol numbers, discover two identities for the Bernoulli numbers and the van der Pol numbers, prove the increasing property and concavity of a function involving the cotangent function, and establish two alternative Maclaurin power series expansions of a function involving the cotangent function. The coefficients of the Maclaurin power series expansions are expressed in terms of specific Hessenberg determinants whose elements contain the Bernoulli numbers and binomial coefficients.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms12070665