Evaluation of diversity of lentil (Lens culinaris Medik.) genotypes under freezing stress in controlled conditions

IntroductionLentil (Lens culinaris Medik.) is an important legume that plays a significant role in food security and human nutrition in the world. Lentils provide protein and fiber, as well as many vitamins and minerals, such as iron, zinc, folate, and magnesium. Lentil is a moderately drought toler...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:پژوهش‌های حبوبات ایران 2023-05, Vol.14 (1), p.92-111
Hauptverfasser: Jafar Nabati, Ahmad Nezami, Seyede Mahbubeh Mirmiran, Mohammad Mohammadi, Alireza Hasanfard
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IntroductionLentil (Lens culinaris Medik.) is an important legume that plays a significant role in food security and human nutrition in the world. Lentils provide protein and fiber, as well as many vitamins and minerals, such as iron, zinc, folate, and magnesium. Lentil is a moderately drought tolerant crop, but the yield is drastically reduced with increased drought stress. One of the simplest ways to reduce the effects of drought stress is regulate plant growth period to avoid moisture stress; termed as drought escape; therefore, autumn planting can be effective in reducing the effects of drought stress in lentile. On the other hand, cold and freezing are the most important factor limiting lentil cultivation in autumn planting. Considering the importance of autumn planting in cold and highlands areas to use the seasonal rainfall in lentile crop and also due to the diversity among lentil genotypes for cold tolerance and the importance of lentil as a source of high nutritional value, this study was conducted to identify cold tolerant lentils genotypes. Materials and MethodsThis research was carried out in order to investigate the effective traits in freezing tolerance of lentil genotypes, as factorial based on Completely Randomized Design with three replications under controlled conditions at Ferdowsi University of Mashhad in 2020. The studied factors included 18 lentil genotypes at four freezing temperatures (0, -15, -18 and -20 °C). The pots were irrigated 24 hours before the freezing stress and then transferred to the thermogradient freezer to apply the tretments in mid-February. The freezer temperature at the beginning of the experiment was 5 °C and after placing the samples with slope of 2 °C per hour the temperature decreased. In order to create ice nucleation in the plant and to avoid the supercooling phenomenon, at 3 °C, Ice nucleation active bacteria (INAB) were sprayed on the plant. In order to balance the ambient temperature, seedlings were kept in each temperature treatment for one hour and then overnight in a cold room at 5 °C. Before exposing the plant to freezing stress, photosynthetic pigments, DPPH radical activity, anthocyanin, total phenol, soluble carbohydrates, malondialdehyde (MDA), proline content, catalase activity, peroxidase activity, and the relative water content (RWC) of the osmotic potential were measured. Three weeks after transferring the samples to the greenhouse, the survival percentage of the samples were evaluated. Plant
ISSN:2980-793X
2783-5367
DOI:10.22067/ijpr.v14i1.2208-1042