A Numerical Method for Multispecies Populations in a Moving Domain Using Combined Masses

This paper concerns the numerical evolution of two interacting species satisfying coupled reaction–diffusion equations in one dimension which inhabit the same part of a moving domain. The domain has both moving external boundaries and moving interior interfaces where species may arise, overlap, or d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-04, Vol.10 (7), p.1124
Hauptverfasser: Baines, M. J., Christou, Katerina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns the numerical evolution of two interacting species satisfying coupled reaction–diffusion equations in one dimension which inhabit the same part of a moving domain. The domain has both moving external boundaries and moving interior interfaces where species may arise, overlap, or disappear. Numerically, a moving finite volume method is used in which node movement is generated by local mass preservation, which includes a general combined mass strategy for species occupying overlapping domains. The method is illustrated by a test case in which a range of parameters is explored.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10071124