Experimental Enrichment of Low-Concentration Ventilation Air Methane in Free Diffusion Conditions

The massive emission of low concentrations (≤0.5%) of methane (CH4) from ventilation roadways results in resource waste and environmental pollution. To mitigate these emissions, an enrichment tower for low-concentration methane is designed, and segregation and non-segregation experiments are conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-02, Vol.11 (2), p.428
Hauptverfasser: Wang, Wen, Wang, Heng, Li, Huamin, Li, Dongyin, Li, Huaibin, Li, Zhenhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The massive emission of low concentrations (≤0.5%) of methane (CH4) from ventilation roadways results in resource waste and environmental pollution. To mitigate these emissions, an enrichment tower for low-concentration methane is designed, and segregation and non-segregation experiments are conducted. The results reveal that stable concentrations of methane under segregation and non-segregation states in the enrichment tower gradually increase with height, with a maximum methane concentration of 0.64% and 0.54%, respectively. This shows that the methane enrichment effect in free diffusion conditions is more significant under the segregation state than under the non-segregation state. The stable concentration of methane in the middle and upper sections of the enrichment tower shows an increasing trend. However, the stable concentration of methane in the lower section of the enrichment tower has an increasing trend (less than 0.50%). According to the methane molecule Boltzmann distribution law, methane concentration enrichment decreases with height, and the conversion of the methane from the segregated to non-segregated is irreversible. Consequently, industrial applications of methane enrichment from buoyant forces are not feasible for low concentrations of methane.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11020428