Crystal Growth Techniques for Layered Superconductors
Layered superconductors are attractive because some of them show high critical temperatures. While their crystal structures are similar, these compounds are composed of many elements. Compounds with many elements tend to be incongruent melting compounds, thus, their single crystals cannot be grown v...
Gespeichert in:
Veröffentlicht in: | Condensed matter 2017-12, Vol.2 (4), p.32 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Layered superconductors are attractive because some of them show high critical temperatures. While their crystal structures are similar, these compounds are composed of many elements. Compounds with many elements tend to be incongruent melting compounds, thus, their single crystals cannot be grown via the melt-solidification process. Hence, these single crystals have to be grown below the decomposition temperature, and then the flux method, a very powerful tool for the growth of these single crystals with incongruent melting compounds, is used. This review shows the flux method for single-crystal growth technique by self-flux, chloride-based flux, and HPHT (high-pressure and high-temperature) flux method for many-layered superconductors: high-Tc cuprate, Fe-based and BiS2-based compounds. |
---|---|
ISSN: | 2410-3896 2410-3896 |
DOI: | 10.3390/condmat2040032 |