A Novel Pareto-Optimal Algorithm for Flow Shop Scheduling Problem

Minimizing job waiting time for completing related operations is a critical objective in industries such as chemical and food production, where efficient planning and production scheduling are paramount. Addressing the complex nature of flow shop scheduling problems, which pose significant challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (18), p.2951
Hauptverfasser: Shahsavari-Pour, Nasser, Heydari, Azim, Fekih, Afef, Asadi, Hamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimizing job waiting time for completing related operations is a critical objective in industries such as chemical and food production, where efficient planning and production scheduling are paramount. Addressing the complex nature of flow shop scheduling problems, which pose significant challenges in the manufacturing process due to the vast solution space, this research employs a novel multiobjective genetic algorithm called distance from ideal point in genetic algorithm (DIPGA) to identify Pareto-optimal solutions. The effectiveness of the proposed algorithm is benchmarked against other powerful methods, namely, NSGA, MOGA, NSGA-II, WBGA, PAES, GWO, PSO, and ACO, using analysis of variance (ANOVA). The results demonstrate that the new approach significantly improves decision-making by evaluating a broader range of solutions, offering faster convergence and higher efficiency for large-scale scheduling problems with numerous jobs. This innovative method provides a comprehensive listing of Pareto-optimal solutions for minimizing makespan and total waiting time, showcasing its superiority in addressing highly complex problems.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12182951