CFD simulation of the hydrodynamics within an RVF module in laminar regime

The dynamic filtration module called Rotating and Vibrating Filtration (RVF) is a performant device for membrane fouling control and limiting the formation of cake layer. Indeed, it can generate strong shear stress at the membrane surface decoupled from the feeding flowrate. Moreover, the pressure f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2023, Vol.379, p.2001
Hauptverfasser: Cheng, Ming, Fillaudeau, Luc, Schmitz, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic filtration module called Rotating and Vibrating Filtration (RVF) is a performant device for membrane fouling control and limiting the formation of cake layer. Indeed, it can generate strong shear stress at the membrane surface decoupled from the feeding flowrate. Moreover, the pressure fluctuation that takes place in the device is also beneficial to control membrane fouling. A CFD model has been validated in laminar regime from experimental measurements of velocity fields and pressure distribution inside the RVF. The boundary layer development at the walls were carefully studied to better explain the effects of the rotation speed and the viscosity on the spatial distribution and time variations of pressure and shear stress at the membrane surface. It appears that shear stress is more efficient than pressure to control membrane performances in laminar regime.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202337902001