Predicting the Pullout Capacity of Small Ground Anchors Using Nonlinear Integrated Computing Techniques

This study investigates predicting the pullout capacity of small ground anchors using nonlinear computing techniques. The input-output prediction model for the nonlinear Hammerstein-Wiener (NHW) and delay inputs for the adaptive neurofuzzy inference system (DANFIS) are developed and utilized to pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2017-01, Vol.2017 (2017), p.1-10
Hauptverfasser: Kaloop, Mosbeh R., Elbeltagi, Emad, Hu, Jong Wan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates predicting the pullout capacity of small ground anchors using nonlinear computing techniques. The input-output prediction model for the nonlinear Hammerstein-Wiener (NHW) and delay inputs for the adaptive neurofuzzy inference system (DANFIS) are developed and utilized to predict the pullout capacity. The results of the developed models are compared with previous studies that used artificial neural networks and least square support vector machine techniques for the same case study. The in situ data collection and statistical performances are used to evaluate the models performance. Results show that the developed models enhance the precision of predicting the pullout capacity when compared with previous studies. Also, the DANFIS model performance is proven to be better than other models used to detect the pullout capacity of ground anchors.
ISSN:1070-9622
1875-9203
DOI:10.1155/2017/2601063